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ABSTRACT
Natural adversarial examples present a significant challenge to
the robustness of deep neural networks (DNNs) in real-world ap-
plications. These examples arise from natural variations within
datasets and are not artificially generated. This paper introduces a
novel defense approach against natural adversarial examples in the
ImageNet dataset by leveraging Salient Feature Extraction (SFE).
Our method distinguishes between salient features (SF), which are
robust and aligned with human perception, and trivial features
(TF), which often mislead models. Utilizing a coupled generative
adversarial network (GAN), we effectively extract and prioritize
SFs, thereby enhancing the model’s ability to accurately classify
and defend against natural adversarial examples. Extensive experi-
ments on ImageNet-A demonstrate that our approach significantly
improves the robustness of DNNs, outperforming existing state-of-
the-art techniques. The implementation and code are made publicly
available to support further research in this critical area.

1 INTRODUCTION
Deep neural networks (DNNs) have achieved remarkable success
across various computer vision tasks, including image classifica-
tion, object detection, and segmentation. However, these models
are vulnerable to adversarial examples—inputs that cause incor-
rect predictions due to subtle, often imperceptible perturbations.
While much research has focused on synthetic adversarial exam-
ples, natural adversarial examples pose an equally significant threat.
These examples, which arise from the inherent complexities and
variations within real-world datasets, can drastically reduce model
performance.

Natural adversarial examples, as seen in datasets like ImageNet-
A and ImageNet-O, expose shared vulnerabilities across models.
ImageNet-A contains challenging in-distribution images that often
lead to misclassifications, while ImageNet-O tests a model’s ability
to handle out-of-distribution (OOD) data, frequently causing high-
confidence misclassifications. Current defense strategies, including
adversarial training and feature squeezing, are often inadequate
against these naturally occurring perturbations.

Our research introduces a novel defense mechanism that lever-
ages Salient Feature Extraction (SFE) to combat natural adversarial
examples. SFE focuses on differentiating between salient features

(SF)—core, class-related features crucial for accurate model predic-
tions—and trivial features (TF), which adversarial examples exploit
to deceive models. By employing a coupled generative adversarial
network (GAN) to separate and prioritize these features, ourmethod
significantly enhances the robustness and accuracy of DNNs against
natural adversarial examples. We validate our approach on the
ImageNet dataset, demonstrating superior performance in both
detection and defense compared to existing methods. This work
advances the field of adversarial defense by providing a robust so-
lution to the challenges posed by natural adversarial examples in
real-world applications.

2 BACKGROUND AND RELATEDWORK
The vulnerability of deep neural networks (DNNs) to adversarial
examples has been widely documented since the seminal work
by Szegedy et al. (2013). Initially, research primarily focused on
synthetic adversarial examples—artificially crafted perturbations
designed to deceive models. However, recent studies have high-
lighted the equally concerning threat posed by natural adversarial
examples, which arise from the inherent complexities and varia-
tions within datasets. Datasets such as ImageNet-A and ImageNet-O
have been specifically curated to expose these vulnerabilities, offer-
ing challenging benchmarks that reveal the deficiencies in current
model robustness. Existing defense strategies, including adversarial
training, defensive distillation, and feature squeezing, have shown
some success against synthetic attacks but often fall short against
natural adversarial examples. This gap underscores the need for
novel defense mechanisms that can effectively handle naturally
occurring adversarial perturbations, ensuring the robustness and
reliability of DNNs in real-world applications.

2.1 Imagenet-A and Imagenet-O
To address the challenge of natural adversarial examples, we con-
sider two specific datasets: ImageNet-A and ImageNet-O, which pro-
vide valuable benchmarks for evaluating model robustness against
naturally occurring adversarial perturbations.

ImageNet-A contains images from the same classes as the orig-
inal ImageNet dataset but selected to be significantly more chal-
lenging. These images exploit the long tail of scene configurations
and classifier blind spots to consistently cause misclassifications



across various models. Despite being naturally occurring and unal-
tered, these examples induce substantial performance degradation,
exposing shared weaknesses in contemporary models. For instance,
a DenseNet-121 model, which typically achieves high accuracy on
standard ImageNet data, drops to around 2% accuracy on ImageNet-
A, reflecting a roughly 90% decrease .

ImageNet-O, on the other hand, is designed to test a model’s
out-of-distribution (OOD) detection capabilities. It comprises im-
ages from classes not included in the ImageNet-1K dataset. These
images often cause models to mistakenly classify them with high
confidence as in-distribution examples. ImageNet-O thus evaluates
a model’s ability to handle semantic shifts in the data distribu-
tion. Models that perform well on ImageNet-1K tend to struggle
with these OOD images, highlighting the models’ susceptibility to
overconfidence in unfamiliar contexts .

Together, these datasets provide a comprehensive evaluation
framework for testing and improving the robustness of deep neural
networks against natural adversarial examples, making them crucial
for developing and assessing new defense mechanisms. Our novel
approach aims to enhance model performance on these datasets by
effectively differentiating between robust, human-aligned salient
features and misleading trivial features .

Figure 1: Natural Adversarial Examples [2]

2.2 Threat model
Our threat model focuses on natural adversarial examples within
the ImageNet dataset, specifically leveraging ImageNet-A and ImageNet-
O as benchmarks. These examples arise from natural variations in
the dataset and do not involve synthetic perturbations. The threat
model is defined by the following characteristics:

Adversarial Nature: The adversarial examples in question are
naturally occurring and not artificially generated. They exploit

inherent complexities, rare configurations, and edge cases in the
dataset to deceive models.

ImageNet-A: This subset consists of images that are particu-
larly challenging for standard classifiers, often causing significant
misclassifications. These images exploit the long tail of visual config-
urations that are less represented in the training data, revealing vul-
nerabilities in the model’s feature extraction and decision-making
processes.

ImageNet-O: This subset includes out-of-distribution (OOD)
images that belong to classes not present in the ImageNet-1K train-
ing set. These images test the model’s ability to distinguish between
in-distribution and out-of-distribution data, exposing the model’s
tendency to confidently misclassify unfamiliar images.

Salient Feature Extraction (SFE):Our approach leverages Salient
Feature Extraction (SFE) to enhance the robustness of DNNs against
natural adversarial examples. SFE focuses on distinguishing be-
tween salient features (SF), which are robust and aligned with
human perception, and trivial features (TF), which adversarial ex-
amples often exploit to mislead models. By emphasizing SF and
minimizing the influence of TF, our method aims to improve the
model’s ability to correctly classify and defend against natural ad-
versarial examples.

Evaluation Metrics: The effectiveness of our defense mecha-
nism will be evaluated using metrics such as accuracy, robustness,
and the model’s capability to detect and correctly classify natu-
ral adversarial examples. Performance will be measured on the
ImageNet-A dataset to assess robustness to difficult in-distribution
examples.

In summary, our threat model targets naturally occurring ad-
versarial examples that expose the inherent weaknesses of DNNs.
By applying Salient Feature Extraction, we aim to enhance the
robustness and reliability of these models in real-world scenarios,
providing a robust defense against natural adversarial perturba-
tions.

3 METHODOLOGY
3.1 Overview
Our methodology centers on the extraction, separation and analysis
of salient features and trivial features from images to detect and
defend against adversarial examples. The approach involves a multi-
stage process including feature extraction, adversarial detection
and re-identification of the correct classification labels through
an SFE framework. This framework leverages coupled Generative
Adversarial Networks and a dedicated adversarial detector (AdvD)
to enhance model robustness.

3.2 Framework
The framework of our proposed method, as shown in Figure 2, com-
prises several key components: feature extraction and separation,
adversarial example detection, and defense via re-identification of
SF. Initially, benign and adversarial examples are fed into a pre-
trained target model. The high-dimensional features obtained from
the last fully connected layer of this model serve as the input to
the SFE. The SFE employs a coupled GAN structure to separate and
extract SF and TF. An adversarial detector (AdvD) is subsequently
trained using these extracted features. Finally, adversarial examples



are detected by evaluating the difference between SF and TF, while
correct labels are reassigned based on the re-identified SF.

Figure 2: SFE Framework [1]
In the framework, the SFE comprises two coupled GAN struc-

tures: a positive GAN (responsible for SF) and a negative GAN
(responsible for TF). The positive GAN includes a positive genera-
tor (PG) and a discriminator (D), which are designed to learn and
generate salient features. Conversely, the negative GAN consists
of a negative generator (NG) and the same discriminator (D), but
focuses on trivial features.

The generators (PG and NG) within the SFE are structurally
identical but are trained with different data to perform their distinct
functions. Each generator consists of stacked fully connected layers
tailored to handle high-dimensional image features. The input layer
size of the generators is [H, W, C], corresponding to the dimensions
of the input image, while the output layer size is [H xW x C, 1]. The
discriminator (D) plays a crucial role in classifying the generated
features as true or false. It shares parameters across both the positive
and negative GANs to maintain consistency in decoding high-level
features, thereby effectively capturing the relationship between SF
and TF. This shared parameter setup helps in generating features
that closely resemble the ground truth distribution.

The training process of the SFE involves inputting benign and
adversarial examples into the target model and extracting the high-
dimensional features from the last fully connected layer. These
features are then used to train the SFE. The goal is to make the SF
of both benign and adversarial examples indistinguishable, while
the TF should match the high-dimensional feature layer for both
input types. The optimization objective is to minimize the mean
square error (MSE) between the input features and the generated
features, ensuring that the generated data closely approximates
real data. The parameters of the PG and D are updated alternately
during the training process to refine the model.

The AdvD in the framework is designed to identify adversarial
examples by analyzing the separated SF and TF. Since SF and TF
are similar in benign examples but differ in adversarial examples,
this characteristic is leveraged to train the AdvD.

The AdvD consists of five fully connected layers. The input layer
size is [H x W x C, 1], matching the output of the SFE generators,
while the output layer size is [1, 1]. During training, the output of
the PG (SF) and NG (TF) are concatenated to form the training set for
the AdvD. The AdvD is trained to output a binary classification: 0
for benign examples and 1 for adversarial examples. The parameters
of the AdvD are optimized by minimizing the classification loss
(lossAdvD).

After the training of the SFE is completed, its outputs are used
to train the AdvD. Specifically, the SF of benign and adversarial
examples, generated by the PG, and the TF generated by the NG,
are concatenated to create the training set for the AdvD. During

the training phase, the concatenated features are fed into the AdvD,
which then outputs the detection result: ’benign’ marked as 0 and
’adversarial’ marked as 1. The AdvD’s parameters are updated by
minimizing the detection loss, ensuring that the AdvD can effec-
tively distinguish between benign and adversarial examples.

For re-identifying the correct labels of adversarial examples, the
SF reconstructed by the PG in the SFE is utilized. These salient
features retain critical information necessary for accurate classi-
fication. When the well-trained SF is input to the target model,
it ensures the correct classification of adversarial examples, thus
providing a robust defense mechanism.

As defined earlier, the SF of adversarial examples are the same as
those of their corresponding benign examples and closely related
to the output of the hidden layer in the model. High-dimensional
image features contain significant information that is essential
for classification. The positive GAN in the SFE reconstructs these
high-dimensional features and enhances the important features.
Consequently, for a well-trained SFE, the SF generated by the PG
still contains the crucial information needed for accurate classifica-
tion. These reconstructed SFs are then input into the target model,
which subsequently provides the correct classification results for
adversarial examples, effectively defending against them.

3.3 Other Implementation Details
In the implementation, we used a dataset consisting of 2640 benign
images and 2640 adversarial images. The dataset was split into an
80% training set (2112 images) and a 20% test set (528 images) to
evaluate the performance of our method. The classification model
employed is InceptionV3 [3], which is pre-trained on the ImageNet-
1k dataset [4], encompassing 1000 classes.

The training process involves multiple stages. Initially, the SFE
is trained using the high-dimensional features extracted from the
target model. Benign and adversarial examples are fed into the
target model to obtain these features, which are then used to train
the SFE. The MSE objective is employed to minimize the distance
between the input features and the generated features, ensuring
that the generated features closely resemble the real data.

Subsequently, the AdvD is trained using the concatenated out-
puts of the PG (SF) and NG (TF) from the SFE. The AdvD learns to
distinguish between benign and adversarial examples based on the
differences in SF and TF. The training set for the AdvD consists of
these concatenated features, and the AdvD is optimized to correctly
classify the examples as either benign or adversarial.

In the defense stage, the well-trained SFE reconstructs the SF
from the input images. These SFs are then fed into the target model,
which re-identifies the correct classification labels for the adversar-
ial examples. This stage ensures robust defense against adversarial
attacks by accurately classifying the input images based on the
reconstructed salient features.

4 RESULTS AND ANALYSIS
After training the GAN model and conducting some evaluations
on the InceptionV3, we recorded the accuracy of the model and
compared it with its accuracy before using the SFE method. Our test
dataset consists of 528 natural adversarial images, sampled from
the adversarial dataset ImageNet-A.



4.1 Accuracy Without Defense
Feeding the InceptionV3 model with the 528 images that were
sampled for testing, we obtained 3% accuracy. This shows that
the model is unable to classify most of the images, missing 513
images out of 528. Since the dataset is meant to be an adversarial
dataset, such results are expected. The reason behind this is as
mentioned before, the model is taking in Trivial Features (TF) that
are negatively affecting the results of the classification.

4.2 Defense Accuracy
After feeding the trained model with the test dataset described
above, we compared the classified label with the true label of the
image and calculated an overall accuracy. The accuracy of the de-
fense model moved from 3% to 79%. The model now is able to
correctly classify 415 images, increasing the number of correctly
classified images by 400. This noticeable increase is due to themodel
now being fed Salient Features (SF) instead of Trivial Features (TF).
Most of the adversarial examples are failing to trick the model with
its TF dominance, since now those TF are eliminated.

4.3 Visualizing the Results
In order to view what the model is basing the classification on, we
used Gradient-weighted Class Activation Mapping (GRAD-CAM)
[5]. GRAD-CAM helps to make the decision of the model easier
to understand by generating a heatmap that can be then overlaid
on the original image. The heatmap will indicate the locations
on the image where the model was affected the most during the
classification. The process is as follows:

(1) The input image is passed through the CNN, and the final
convolutional layer’s feature maps are obtained.

(2) The gradients of the score for the target class with respect
to the feature maps are computed. These gradients represent
how changes in the feature maps affect the final prediction.

(3) The gradients are then weighted by the importance of each
feature map, which is determined by the average gradient
value of each feature map. This emphasizes the importance
of feature maps that have higher gradients.

(4) The weighted combination of gradients is summed up over
all the feature maps to obtain the final heatmap.

(5) Finally, the heatmap is overlaid on the input image to visu-
alize which regions of the image are most relevant for the
prediction of the target class.

We can see from Figure 3 that the output of GRAD-CAM before
applying the defense highlights the areas around the object. This
is due to the model being tricked by the TFs and misclassified the
image. We can see that the true label of this image is dragonfly, but
it is classified as manhole_cover. The natural adversarial examples
that we used have the same effect on the model, tricking it with
trivial features.

After applying the defense mechanism utilizing SFE, we can
see from Figure 4 that the image is now correctly classified as
dragonfly. We can also see that the heatmap generated is now
focusing primarely on the dragonfly itself, and not on the area
around it. This is due to the SFE feeding the SFs to the model, and
eliminating the TFs that were previously tricking the model.

Figure 3: GRAD-CAM output before defense

Figure 4: GRAD-CAM output after defense

5 DISCUSSION
The defense approach proposed in this paper addresses the critical
challenge posed by natural adversarial examples in the ImageNet
dataset. By leveraging Salient Feature Extraction (SFE), the method
aims to enhance the robustness of deep neural networks (DNNs)
against naturally occurring perturbations, thereby improvingmodel
performance in real-world applications.

The results presented demonstrate a significant improvement
in model accuracy and robustness when defending against natural
adversarial examples. Without defense, the model achieved only a
3% accuracy rate on a test dataset comprising adversarial images
sampled from ImageNet-A. However, after implementing the de-
fense mechanism, the accuracy substantially increased to 79%. This
notable enhancement underscores the effectiveness of the proposed
approach in mitigating the impact of adversarial perturbations on
model predictions.

Visualizations using Gradient-weighted Class Activation Map-
ping (GRAD-CAM) provide further insights into the decision-making
process of the model before and after applying the defense mecha-
nism. Before defense, the model tends to focus on trivial features
surrounding the objects in the images, leading to misclassifica-
tions. In contrast, after defense, the model’s attention shifts towards
salient features relevant to the objects, resulting in more accurate
classifications.

This approach was not implemented before for defending against
natural adversarial examples. The method’s effectiveness was only
investigated for the defence against adversarial examples gener-
ated by using perturbations in the paper we mentioned before [1].
Our results are valuable in the area of defense against adversarial
examples, since natural adversarial examples are one of the most



commonly seen types, since they occur naturally in most datasets,
and they cannot be detected by an observer checking the images.

6 CONCLUSION
In conclusion, this paper introduces a novel defense mechanism
leveraging Salient Feature Extraction (SFE) to combat the signifi-
cant challenge posed by natural adversarial examples in the Ima-
geNet dataset. The proposed approach demonstrates a substantial
improvement in the robustness and accuracy of deep neural net-
works (DNNs) against naturally occurring perturbations, thereby
enhancing model performance in real-world applications.

The results presented highlight a remarkable enhancement in
model accuracy, with a notable increase from 3

It is noteworthy that this defense approach was not previously
implemented specifically for defending against natural adversarial
examples. Prior research primarily focused on synthetic adversarial
examples, making this study a valuable contribution to the field.
Natural adversarial examples pose a significant challenge as they
occur naturally in most datasets and cannot be easily detected by
human observers.

Overall, the findings presented in this paper contribute to ad-
vancing the field of adversarial defense, particularly in addressing
the vulnerabilities of DNNs to naturally occurring perturbations.
By effectively differentiating between robust salient features and
misleading trivial features, the proposed approach enhances the
reliability and robustness of DNNs, thereby paving the way for
more secure and trustworthy applications in computer vision and
related fields.
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