
Final Report for L1 Optimal Camera Paths Video
Stabilization Project

Omar Hamdache
22001398

Computer Engineering

Furkan Çelik
21901792

Electrical and Electronics Engineering

Abstract—In this project, we aim to obtain a stabilized video
by eliminating unwanted camera motions. For that purpose,
instead of just suppressing high-frequency motion paths, we
employed the method mentioned in the article Auto-Directed
Video Stabilization with Robust L1 Optimal Camera Paths [1].
The methodology mentioned in this paper mainly consists of 3
steps. First, the original motion in the original video is estimated
and denoted as Ct. Secondly, the stabilized camera trajectory
Pt = Ct * Bt is estimated by finding the proper stabilizing Bt

transform. To find Bt, the linear programming solution method
was utilized to minimize the objective function consisting of the
weighted sum of the first, second, and third derivatives of the
resulting camera path subject to some constraints. Finally, the
stabilized video is synthesized using the estimated smooth camera
path.

I. INTRODUCTION

Our method operates in three main steps: firstly estimating
the original shaky camera path, secondly estimating a new
smooth camera path, and thirdly reproducing the stabilized
video using the estimated smooth camera path.

For that purpose, we first found the good features in the
video frames to track and used them in the Lucas-Kanade
optical flow algorithm to produce the transformation matrix
that explains the linear motion between each frame. This
parametric linear motion model Ft, is iteratively multiplied
at each frame to obtain the original camera path Ct. Given
the original path Ct, the desired smooth path is expressed as
Pt = Bt * Ct where Bt is the update transform when applied
to the original video path Ct, yields the optimal path Pt. To
obtain Bt, the objective function,

O(P) = w1|D(P)|1 + w2|D2(P)|1 + w3|D3(P)|1 (1)

subject to inclusion and proximity constraints is solved by
the Linear Programming method.

II. IMPLEMENTATION

In this section, we examine our methodology and the parts
we have implemented.

A. Features to Track

Since the algorithm used estimates the motion of the camera
by tracking the movements of the feature points between
consecutive frames, the first step should be to select good
features to track.

For that purpose after reading each frame of the video,
we used the goodFeaturesToTrack method of openCV
library.

The function cv.goodFeaturesToTrack uses the Shi-
Tomasi algorithm which is a one-step advanced version of the
Harris corner detection algorithm. The Shi-Tomasi algorithm
computes the Hermitian matrix for the given block of pixels
and chooses the minimum of the eigenvalues of the Hermitian
matrix as scoring. As the eigenvalues increase, the quality
of the corner increases [2]. The parameters of the function
are set to: maxCorners=200, qualityLevel=0.015,
minDistance=30, and blockSize=20.

H =

[
I2x IxIy
IyIx I2y

]

Hx+ = λ+x+

Hx− = λ−x−

(2)

In the equation (1), H is the Hermitian matrix and (λ) s are
the eigenvalues of it [3].

R = min(λ1, λ2) (3)

The equation (2) gives the Shi-Tomas scoring function.
In this method, there are some parameters that we played

to optimize the selection of features. For instance, increasing
the quality level enabled us to track better corners, rejecting
the points lying in the flat region. Also, we can choose the
number of corners to keep track of and the block size of the
pixels that the algorithm searches for corners inside.

Another method tried to obtain good features was an object
detection algorithm to get more quality feature points in a
specific area. For that purpose, the face-tracking algorithm
of the mediapipe library of the python was utilized [4].
This algorithm provides around 468 3D face landmarks from
specific regions of the face and then, these feature points are
fed to the optical flow algorithm. In this way, it was observed
that the deformations in the specific region of interest can
substantially be eliminated, and better stabilization can be
obtained.

Fig. 1. The selected feature points (corners) to be tracked.

Fig. 2. The provided feature points on the face.

B. Optical Flow

After selecting good features to keep track of, the posi-
tions of these points are fed to the Lucas-Kanade optical
flow algorithm. In our optical flow implementation, we used
calcOpticalFlowPyrLK method from the python cv2
library [5]. In this algorithm, a block of points is chosen around
the specified feature points, and the corresponding movement
of that block between the consecutive frames is computed.
Hence, if a flow is found, the algorithm gives the position of
the points that we are tracking in the new frame. Therefore,
we can draw lines between these points to represent the flow.

Fig. 3. The calculated optical flow of feature points.

As can be seen from the image, there are some points that
give incorrect flows. Especially the points that are misclassified
as corners give erroneous flows which is expected in the
Lucas-Kanade optical flow algorithm. The reason for that is,
that the Lucas-Kanade optical flow algorithm uses the Hermi-
tian matrix to calculate the flow of the block of points in the
image assuming brightness constancy. Hence, this algorithm
gives better results for the flow of corners. To eliminate the
erroneous results we have, we optimized the parameters of the
goodFeaturesToTrack method to have more quality features.

C. Affine Transformation

The next step is to model the movement of those feature
points so that we can use them to construct a camera path C(t)
later. This movement of the feature points can be modeled by
using a matrix Ft that describes the motion of the feature
points from the frame It to It−1. We use a 6 Degrees of
Freedom (DOF) affine transformation to estimate the camera’s
motion across frames by calculating the affine transforma-
tions that best describe the movement between each pair of

consecutive frames. The 6 DOF refers to the combination of
translation, rotation, scaling, and shearing transformations that
can be applied to a specific frame to reach the next one. Ft

can be written as

Ft =

at bt ∆xt

ct dt ∆yt
0 0 1

T

(4)

where:
• at and dt represent scaling factors along the x and y axes,

respectively,
• bt and ct are shearing factors,
• ∆xt and ∆yt are translations along the x and y axes.

In our code, we use estimateAffine2D function from
the python cv2 library. The function calculates a transfor-
mation matrix (Ft described before) that best describes the
motion between the previous and current frames based on the
tracked feature points. The function estimateAffine2D
takes as input the points of the current frame t and the previous
frame t−1 that were extracted using the optical flow algorithm
described in the previous section. The transformation matrix
for each frame is stored in the F_transforms array. This
array builds up the piece-wise representation of the camera’s
movement across the video.

Below is an example of the output of the variables
prev_pts (the feature points of the previous frame),
curr_pts (the feature points of the current frame), and
F_t (the first two rows of the Ft matrix computed using the
estimateAffine2D function).

prev pts =



(
824 367

)(
694 142

)(
683 249

)(
1095 612

)(
696 102

)
. . .
. . .



curr pts =



(
798.5739 366.65085

)(
669.0923 145.35805

)(
658.46436 250.9622

)(
1065.6102 604.47644

)(
671.3517 106.01224

)
. . .
. . .



Ft =

(
1.01083e+ 00 8.23656e− 03 1.67490e+ 01
2.27715e− 03 1.01603e+ 00 −1.19705e+ 01

)
D. Camera Path and Feature Points Motion

As mentioned in the paper, the camera path Ct is computed
by the right multiplication of the Ft matrices that we computed
previously [1]. More precisely, we have

Ct+1 = CtFt+1 =⇒ F1F2...Ft (5)

where we compute Ct from the previously calculated
transformation matrices Ft between each two frames. The
computed camera path Ct will contain the unstable path that
the camera followed during the video.

After following the previously described steps we obtain a
camera path Ct, which ”describes” how the camera is moving
during the footage, by tracking some points on the frames and
modeling their movement using transformation matrices Ft.

E. Linear Programming Optimization Problem

In this part, the objective function consisting of the weighted
sum of the derivatives of the optimal path is minimized.

The objective function to be minimized:

O(P) = w1|D(P)|1 + w2|D2(P)|1 + w3|D3(P)|1 (6)

where |D(P)|1 represents the camera’s path absolute change
in position between frames, |D2(P)|1 represents the camera
path’s acceleration, and |D3(P)|1 represents the change in
acceleration, or jerk, in the camera motion. Solving this
optimization problem will lead us to the smooth camera path
Pt. The constant weighting factors w1, w2, and w3 respectively
suppress the velocity, acceleration, and jerk. Increasing the
weights leads the optimization to decrease the L1-norm of
the corresponding derivative. Therefore, with properly chosen
weights, this equation leads to a smooth trajectory. Since the
undesired effects of shaky video mainly stem from the jerk,
the w3 was chosen the highest to eliminate the effects of jerk
more. As suggested by the paper, w1 was chosen 10, w2 was
chosen 1, and w3 was chosen 100.

The residuals |D(P)|1, |D2(P)|1, and |D3(P)|1 can be
expressed in the following ways:

1. |D(P)|1: By the Taylor series expansion, the forward
differencing of the frames gives the first derivative of the
optimal path in the form

|D(P)| =
∑
t

|Pt+1 − Pt| =
∑
t

|Ct+1Bt+1 − CtBt|

Applying the decomposition of Ct:

|D(P)| =
∑
t

|CtFt+1Bt+1−CtBt| ≤
∑
t

|Ct||Ft+1Bt+1−Bt|

With Ct known, we therefore seek to minimize the residual:∑
t

|Rt|, with Rt := Ft+1Bt+1 −Bt

2. |D2(P)|1: By the Taylor series expansion, the forward
differencing of the first derivative of the optimal path gives the
second derivative of the optimal path in the form |D2(P)| =∑

t |DPt+2 − DPt+1| or the Taylor series expansion of the
second derivative of the frames gives equally

∑
t |Pt+2 −

2Pt+1 + Pt|, since we model the error as additive instead of
compositional. We therefore minimize directly the difference
of the residuals |Rt+1−Rt| = |Ft+2Bt+2−(I+Ft+1)Bt+1+
Bt|.

3. |D3(P)|1: Similarly using the Taylor series expansion of
the second derivative of the first derivative, |Rt+2 − 2Rt+1 +
Rt| = |Ft+3Bt+3−(I+2Ft+2)Bt+2+(2I+Ft+1)Bt+1−Bt|.

4. Minimizing over Bt: As initially mentioned, the known
frame-pair transforms Ft and the unknown update transforms
Bt are represented by linear motion models. For example, Ft

is expressed as a 6 DOF affine transformation Ft = A(x; pt) =(
at bt
ct dt

)(
x1

x2

)
+

(
dxt

dyt

)
with pt being the parametrization

vector pt = (dxt, dyt, at, bt, ct, dt)
T . Similarly, a 4 DOF linear

similarity is obtained by setting at = dt and bt = −ct.
We seek to minimize the weighted L1 norm of the residuals

overall update transforms Bt parametrized by their corre-
sponding vector pt. Then, the residual for the constant path
segment becomes |Rt(p)| = |M(Ft+1)pt+1 − pt|, where
M(Ft+1) is a linear operation representing the matrix mul-
tiplication of Ft+1Bt+1 in parameter form.

Hence, the residuals can be represented as:

|D(P)|1 =
∑
t

(|Ct| · |Ft+1 ·Bt+1 −Bt|)

|D2(P)|1 =
∑
t

|Rt+1 −Rt|

|D3(P)|1 =
∑
t

|Rt+2 − 2 ·Rt+1 +Rt|

To solve the optimization problem using the linear program-
ming method, the slack variables e1t , e2t , and e3t corresponding
to each residual are introduced to minimize the L1 norm of
the residuals expressed as:

−e1t < Ft+1 ·Bt+1 −Bt < e1t

−e2t < Rt+1 −Rt < e2t

−e3t < Rt+2 − 2 ·Rt+1 +Rt < e3t

where Rt := Ft+1Bt+1 −Bt

Then the objective function to minimize can be expressed
as:

w1 · cT1 · e1t
w2 · cT2 · e2t
w3 · cT3 · e3t

where c corresponds to (dxt, dyt, at, bt, ct, dt) (for |D(P)|1).
Adjusting the weights of c enables us to steer the mini-

mization towards specific parameters. For instance, using a
weighting of 100:1 for affine to translational parts helps us to
suppress the affine transformations more than the translational
transformation and reduces the effects of possible deforma-
tions that can occur in the video frame.

c = [1, 1, 100, 100, 100, 100, 100]

F. Inclusion and Proximity Constraints

The inclusion constraint requires the crop window with the
specified size to stay contained inside the original camera
frame. Hence, this ensures that all pixels in the crop window
contain valid values.

The proximity constraint aims to follow the general intent
of the original video by limiting the values of scaling and
shearing. This constraint also limits the difference between the
operations done on the x-axis and y-axis to prevent possible
deformations that can occur on the objects in the crop window.

Ft =

at bt ∆xt

ct dt ∆yt
0 0 1

T

(7)

The constraints for the parameters in the transformation
matrix can be listed as:

0.9 ≤ at ≤ 1.1

0.9 ≤ dt ≤ 1.1

−0.1 ≤ bt ≤ 0.1

−0.1 ≤ ct ≤ 0.1

|at − dt| ≤ 0.05

−0.1 ≤ bt + ct ≤ 0.1

These constraints mean restricting the magnitude of the
scaling and shearing. Also, the difference between the scaling
along the x and y axes is also restricted so that the deformation
in the output video can be reduced. Without these constraints,
the optimal path would be constant.

G. Stabilizing the Video

After solving the optimization problem, the transform Bt

which transforms a crop window originally centered in the
frame rectangle is obtained. In order to apply those desired
transforms to the shaky frames and ”undo” the shaking, the
function warpAffine is used from the cv2 library. The
function takes the frame along with the transformation matrix
and applies the transformation to the frame so that it can be
used in the stabilized video.

III. RESULTS

The stabilized videos for different scenarios and the plots
for the motion paths along the x and y axes of the stabilized
videos are obtained to show and evaluate the results obtained.

As can be seen from the plots below shaky and undesired
motion paths are eliminated and instead smoother but still
meaningful which contains the intent of the original motion
path is obtained.

Fig. 4. Stabilized and original motion paths along the x direction.

Fig. 5. Stabilized and original motion paths along the y direction.

In the screenshots taken from the original and stabilized
video frames, we can observe that the object which is the home
contained inside the crop window has a little bit of deformation
in the x-y axes. This happens because of the allowed scaling
differences in the x-y axes. That implies that the restrictions on
the translational and affine parts of the transformations should
be put wisely to obtain a desired stabilized video frame.

Another way to avoid deformations on the object of interest
is to obtain so many feature points on that specific object. This
method was applied to the videos containing faces using the
face-tracking algorithm and fruitful and better results were
obtained.

Fig. 6. Original video frame.

Fig. 7. Stabilized crop window frame.

IV. CONCLUSION

In conclusion, the approach presented in this paper demon-
strates different approaches for the development of a stabilized
video system utilizing L1 optimal camera paths. By employing
a multi-step methodology outlined in the Auto-Directed Video
Stabilization with Robust L1 Optimal Camera Paths paper, we
have successfully stabilized shaky videos by estimating and
optimizing camera paths.

The implementation process involved several key steps.
Initially, we selected high-quality feature points in video
frames using the Lucas-Kanade optical flow algorithm, en-
suring accurate tracking of motion. Subsequently, we modeled
the camera’s motion using affine transformations between con-
secutive frames, ultimately deriving the original camera path
Ct. Through the use of linear programming optimization, we
minimized the weighted sum of derivatives of the optimal path,
effectively smoothing the camera trajectory while preserving
the original intent of the motion. Additionally, inclusion and
proximity constraints were enforced to ensure the stability and
consistency of the final output.

The results of our implementation have been promising, as
evidenced by the stabilized videos and motion path plots. The
elimination of undesired camera motions and the preservation
of meaningful motion patterns signify the effectiveness of our
approach. However, it’s crucial to note that some deformations
may occur, specifically because of the use of scaling and shear-
ing. To mitigate this, careful adjustment of constraints and
feature selection strategies can be employed, as demonstrated
in our experimentation with face-tracking.

Overall, this paper showcases a robust framework for video
stabilization, laying the groundwork for further refinement and
optimization. With continued development and fine-tuning,

this approach holds the potential to enhance video quality
across various applications, from amateur film-making to
professional cinematography.

V. FUTURE WORK

The work done in this paper can be extended and improved
in the future. We showed that for video stabilization, using
carefully selected features significantly improves stabilization,
especially for methods based on camera paths and affine
transformations.

As it was demonstrated that face tracking improved the
stabilization results, further extension of this work can be
done by doing tracking on many objects in the video’s frame.
A possible approach is to track all the ”main” objects in
the video’s frame and then extract features from only those
objects, ignoring the background and other trivial features.
This will make the stabilization algorithm more robust and
better adapted to deal with different scenarios where we might
not have any faces in the videos, or the faces are not easily
detectable or trackable.

Another approach would be to fix the tracking based on the
use case and application area. This will probably lead to better
results in settings where it is possible to expect what objects
to have, so that the tracking algorithm can focus on only those
main objects.

REFERENCES

[1] M. Grundmann, V. Kwatra, and I. Essa, “Auto-directed
video stabilization with robust l1 optimal camera paths,”
in CVPR 2011, Jun. 2011, pp. 225–232. DOI: 10.1109/
CVPR.2011.5995525.

[2] A. K., CV2.GOODFEATURESTOTRACK(), https : / /
theailearner.com/tag/cv2-goodfeaturestotrack/, [Online;
accessed 29-March-2024], 2021.

[3] L. Schmid, Local Feature Detectors, [Online; accessed
29-March-2024], 2003.

[4] Joefernandez, MediaPipe Face Mesh, https://github.com/
google- ai- edge/mediapipe/blob/master/docs/solutions/
face mesh.md, [Online; accessed 16-May-2024].

[5] OpenCV, Optical Flow, https : / /docs .opencv.org /4 .x /
db/d7f/tutorial js lucas kanade.html, [Online; accessed
29-March-2024].

